The Cauchy-Riemann Equation on Pseudoconcave Domains with Applications

Mei-Chi Shaw

University of Notre Dame Joint work with Siqi Fu and Christine Laurent-Thiébaut

2018 Taipei Conference on Geometric Invariance and Partial Differential Equations Academia Sinica

Outline

- 1 The $\overline{\partial}$ -problem and Dolbeault cohomology groups
- The Strong Oka's Lemma
- 3 Dolbeault cohomology on annuli
- 4 Solution to the Chinese Coin Problem
- The Cauchy-Riemann Equations in Complex Projective Spaces
- 6 Non-closed Range Property for Some smooth bounded Stein Domain

Outline

- 1 The $\overline{\partial}$ -problem and Dolbeault cohomology groups
- 2 The Strong Oka's Lemma
- 3 Dolbeault cohomology on annuli
- Solution to the Chinese Coin Problem
- 5 The Cauchy-Riemann Equations in Complex Projective Spaces
- 6 Non-closed Range Property for Some smooth bounded Stein Domain

The $\overline{\partial}$ -problem

Let Ω be a domain in \mathbb{C}^n (or a complex manifold), $n \geq 2$. Given a (p,q)-form g such that $\overline{\partial} g = 0$, find a (p,q-1)-form u such that $\overline{\partial} u = g$.

If g is in $C_{p,q}^{\infty}(\Omega)$ (or $g \in C_{p,q}^{\infty}(\Omega)$), one seeks $u \in C_{p,q-1}^{\infty}(\Omega)$ (or $u \in C_{p,q-1}^{\infty}(\overline{\Omega})$).

$$H^{p,q}(\Omega) = \frac{\ker\{\overline{\partial} : \mathcal{C}^{\infty}_{p,q}(\Omega) \to \mathcal{C}^{\infty}_{p,q+1}(\Omega)\}}{\operatorname{range}\{\overline{\partial} : \mathcal{C}^{\infty}_{p,q-1}(\Omega) \to \mathcal{C}^{\infty}_{p,q}(\Omega)\}} \quad (H^{p,q}(\overline{\Omega}))$$

- Obstruction to solving the $\overline{\partial}$ -problem on Ω .
- Natural topology arising as quotients of Fréchet topologies on $\ker(\overline{\partial})$ and $\operatorname{range}(\overline{\partial})$.
- This topology is Hausdorff iff range($\overline{\partial}$) is closed in $\mathcal{C}_{p,q}^{\infty}(\Omega)$

The $\overline{\partial}$ -problem

Let Ω be a domain in \mathbb{C}^n (or a complex manifold), $n \geq 2$. Given a (p,q)-form g such that $\overline{\partial} g = 0$, find a (p,q-1)-form u such that $\overline{\partial} u = g$. If g is in $C^{\infty}_{p,q}(\Omega)$ (or $g \in C^{\infty}_{p,q}(\overline{\Omega})$), one seeks $u \in C^{\infty}_{p,q-1}(\Omega)$ (or $u \in C^{\infty}_{p,q-1}(\overline{\Omega})$).

$$H^{p,q}(\Omega) = \frac{\ker\{\overline{\partial} : \mathcal{C}^{\infty}_{p,q}(\Omega) \to \mathcal{C}^{\infty}_{p,q+1}(\Omega)\}}{\operatorname{range}\{\overline{\partial} : \mathcal{C}^{\infty}_{p,q-1}(\Omega) \to \mathcal{C}^{\infty}_{p,q}(\Omega)\}} \quad (H^{p,q}(\overline{\Omega}))$$

- Obstruction to solving the $\overline{\partial}$ -problem on Ω .
- Natural topology arising as quotients of Fréchet topologies on $\ker(\overline{\partial})$ and $\operatorname{range}(\overline{\partial})$.
- This topology is Hausdorff iff range($\overline{\partial}$) is closed in $\mathcal{C}_{p,q}^{\infty}(\Omega)$

The $\overline{\partial}$ -problem

Let Ω be a domain in \mathbb{C}^n (or a complex manifold), $n \geq 2$. Given a (p,q)-form g such that $\overline{\partial}g = 0$, find a (p,q-1)-form u such that $\overline{\partial}u = g$. If g is in $\mathcal{C}^{\infty}_{p,q}(\Omega)$ (or $g \in \mathcal{C}^{\infty}_{p,q}(\overline{\Omega})$), one seeks $u \in \mathcal{C}^{\infty}_{p,q-1}(\Omega)$ (or $u \in \mathcal{C}^{\infty}_{p,q-1}(\overline{\Omega})$).

$$H^{p,q}(\Omega) = \frac{\ker\{\overline{\partial}: \mathcal{C}^{\infty}_{p,q}(\Omega) \to \mathcal{C}^{\infty}_{p,q+1}(\Omega)\}}{\operatorname{range}\{\overline{\partial}: \mathcal{C}^{\infty}_{p,q-1}(\Omega) \to \mathcal{C}^{\infty}_{p,q}(\Omega)\}} \quad (H^{p,q}(\overline{\Omega}))$$

- Obstruction to solving the $\overline{\partial}$ -problem on Ω .
- Natural topology arising as quotients of Fréchet topologies on $\ker(\overline{\partial})$ and $\operatorname{range}(\overline{\partial})$.
- This topology is Hausdorff iff range($\overline{\partial}$) is closed in $C_{p,q}^{\infty}(\Omega)$

The $\overline{\partial}$ -problem

Let Ω be a domain in \mathbb{C}^n (or a complex manifold), $n \geq 2$. Given a (p,q)-form g such that $\overline{\partial}g = 0$, find a (p,q-1)-form u such that $\overline{\partial}u = g$. If g is in $\mathcal{C}^{\infty}_{p,q}(\Omega)$ (or $g \in \mathcal{C}^{\infty}_{p,q}(\overline{\Omega})$), one seeks $u \in \mathcal{C}^{\infty}_{p,q-1}(\Omega)$ (or $u \in \mathcal{C}^{\infty}_{p,q-1}(\overline{\Omega})$).

$$H^{p,q}(\Omega) = \frac{\ker\{\overline{\partial}: \mathcal{C}^{\infty}_{p,q}(\Omega) \to \mathcal{C}^{\infty}_{p,q+1}(\Omega)\}}{\operatorname{range}\{\overline{\partial}: \mathcal{C}^{\infty}_{p,q-1}(\Omega) \to \mathcal{C}^{\infty}_{p,q}(\Omega)\}} \quad (H^{p,q}(\overline{\Omega}))$$

- Obstruction to solving the $\overline{\partial}$ -problem on Ω .
- Natural topology arising as quotients of Fréchet topologies on $\ker(\overline{\partial})$ and $\operatorname{range}(\overline{\partial})$.
- This topology is Hausdorff iff range($\overline{\partial}$) is closed in $\mathcal{C}_{p,q}^{\infty}(\Omega)$

The $\overline{\partial}$ -problem

Let Ω be a domain in \mathbb{C}^n (or a complex manifold), $n \geq 2$. Given a (p,q)-form g such that $\overline{\partial}g = 0$, find a (p,q-1)-form u such that $\overline{\partial}u = g$. If g is in $\mathcal{C}^{\infty}_{p,q}(\Omega)$ (or $g \in \mathcal{C}^{\infty}_{p,q}(\overline{\Omega})$), one seeks $u \in \mathcal{C}^{\infty}_{p,q-1}(\Omega)$ (or $u \in \mathcal{C}^{\infty}_{p,q-1}(\overline{\Omega})$).

$$H^{p,q}(\Omega) = \frac{\ker\{\overline{\partial}: \mathcal{C}^{\infty}_{p,q}(\Omega) \to \mathcal{C}^{\infty}_{p,q+1}(\Omega)\}}{\operatorname{range}\{\overline{\partial}: \mathcal{C}^{\infty}_{p,q-1}(\Omega) \to \mathcal{C}^{\infty}_{p,q}(\Omega)\}} \quad (H^{p,q}(\overline{\Omega}))$$

- Obstruction to solving the $\overline{\partial}$ -problem on Ω .
- Natural topology arising as quotients of Fréchet topologies on $\ker(\overline{\partial})$ and $\mathrm{range}(\overline{\partial}).$
- This topology is Hausdorff iff range $(\overline{\partial})$ is closed in $\mathcal{C}_{p,q}^{\infty}(\Omega)$

The $\overline{\partial}$ -problem

Let Ω be a domain in \mathbb{C}^n (or a complex manifold), $n \geq 2$. Given a (p,q)-form g such that $\overline{\partial}g = 0$, find a (p,q-1)-form u such that $\overline{\partial}u = g$. If g is in $C^{\infty}_{p,q}(\Omega)$ (or $g \in C^{\infty}_{p,q}(\overline{\Omega})$), one seeks $u \in C^{\infty}_{p,q-1}(\Omega)$ (or $u \in C^{\infty}_{p,q-1}(\overline{\Omega})$).

$$H^{p,q}(\Omega) = \frac{\ker\{\overline{\partial}: \mathcal{C}^{\infty}_{p,q}(\Omega) \to \mathcal{C}^{\infty}_{p,q+1}(\Omega)\}}{\operatorname{range}\{\overline{\partial}: \mathcal{C}^{\infty}_{p,q-1}(\Omega) \to \mathcal{C}^{\infty}_{p,q}(\Omega)\}} \quad (H^{p,q}(\overline{\Omega}))$$

- Obstruction to solving the $\overline{\partial}$ -problem on Ω .
- Natural topology arising as quotients of Fréchet topologies on $\ker(\overline{\partial})$ and $\operatorname{range}(\overline{\partial})$.
- This topology is Hausdorff iff range($\overline{\partial}$) is closed in $\mathcal{C}_{p,q}^{\infty}(\Omega)$

The $\overline{\partial}$ -problem

Let Ω be a domain in \mathbb{C}^n (or a complex manifold), $n \geq 2$. Given a (p,q)-form g such that $\overline{\partial}g = 0$, find a (p,q-1)-form u such that $\overline{\partial}u = g$. If g is in $C^{\infty}_{p,q}(\Omega)$ (or $g \in C^{\infty}_{p,q}(\overline{\Omega})$), one seeks $u \in C^{\infty}_{p,q-1}(\Omega)$ (or $u \in C^{\infty}_{p,q-1}(\overline{\Omega})$).

$$H^{p,q}(\Omega) = \frac{\ker\{\overline{\partial} : \mathcal{C}^{\infty}_{p,q}(\Omega) \to \mathcal{C}^{\infty}_{p,q+1}(\Omega)\}}{\operatorname{range}\{\overline{\partial} : \mathcal{C}^{\infty}_{p,q-1}(\Omega) \to \mathcal{C}^{\infty}_{p,q}(\Omega)\}} \quad (H^{p,q}(\overline{\Omega}))$$

- Obstruction to solving the $\overline{\partial}$ -problem on Ω .
- Natural topology arising as quotients of Fréchet topologies on $\ker(\overline{\partial})$ and $\operatorname{range}(\overline{\partial})$.
- This topology is Hausdorff iff range($\overline{\partial}$) is closed in $\mathcal{C}_{p,q}^{\infty}(\Omega)$

L^2 -approach to $\overline{\partial}$

Two ways to close an unbounded operator in L^2

(1) The (weak) maximal closure of ∂:
 Realize ∂ as a closed densely defined (maximal) operator

$$\overline{\partial}: L^2_{p,q}(\Omega) \to L^2_{p,q+1}(\Omega).$$

The L^2 -Dolbeault Coholomolgy is defined by

$$H^{p,q}_{L^2}(\Omega) = \frac{\ker\{\overline{\partial}: L^2_{p,q}(\Omega) \to L^2_{p,q+1}(\Omega)\}}{\mathrm{range}\{\overline{\partial}: L^2_{p,q-1}(\Omega) \to L^2_{p,q}(\Omega)\}}$$

• (2) The (strong) minimal closure of $\overline{\partial}$: Let $\overline{\partial}_c$ be the (strong) minimal closed L^2 extension of $\overline{\partial}$.

$$\overline{\partial}_c: L^2_{p,q}(\Omega) \to L^2_{p,q+1}(\Omega).$$

By this we mean that $f \in \text{Dom}(\overline{\partial}_c)$ if and only if there exists a sequence of compactly supported smooth forms f_{ν} such that $f_{\nu} \to f$ and $\overline{\partial} f_{\nu} \to \overline{\partial} f_{\circ}$.

L^2 -approach to $\overline{\partial}$

Two ways to close an unbounded operator in L^2

(1) The (weak) maximal closure of ∂:
 Realize ∂ as a closed densely defined (maximal) operator

$$\overline{\partial}: L^2_{p,q}(\Omega) \to L^2_{p,q+1}(\Omega).$$

The L^2 -Dolbeault Coholomolgy is defined by

$$H_{L^2}^{p,q}(\Omega) = \frac{\ker\{\overline{\partial}: L_{p,q}^2(\Omega) \to L_{p,q+1}^2(\Omega)\}}{\operatorname{range}\{\overline{\partial}: L_{p,q-1}^2(\Omega) \to L_{p,q}^2(\Omega)\}}$$

• (2) The (strong) minimal closure of $\overline{\partial}$: Let $\overline{\partial}_c$ be the (strong) minimal closed L^2 extension of $\overline{\partial}$.

$$\overline{\partial}_c: L^2_{p,q}(\Omega) \to L^2_{p,q+1}(\Omega).$$

By this we mean that $f \in \text{Dom}(\overline{\partial}_c)$ if and only if there exists a sequence of compactly supported smooth forms f_{ν} such that $f_{\nu} \to f$ and $\overline{\partial} f_{\nu} \to \overline{\partial} f_{\infty}$.

Closed range property for pseudoconvex domains in \mathbb{C}^n

Hörmander 1965

If $\Omega \subset\subset \mathbb{C}^n$ is bounded and pseudoconvex, then

$$H_{L^2}^{p,q}(\Omega) = 0, \qquad q \neq 0.$$

(Kohn) Sobolev estimates for the ∂ -problem

Let Ω be a bounded pseudoconvex domain in \mathbb{C}^n with smooth boundary. Then

$$H_{W^s}^{p,q}(\Omega) = 0, \qquad s \in \mathbb{N}$$

Kohn 1963, 1974

If $\Omega \subset\subset \mathbb{C}^n$ is bounded and pseudoconvex with smooth boundary, then

$$H^{p,q}(\overline{\Omega}) = 0, \qquad q \neq 0.$$

Closed range property for pseudoconvex domains in \mathbb{C}^n

Hörmander 1965

If $\Omega \subset\subset \mathbb{C}^n$ is bounded and pseudoconvex, then

$$H_{L^2}^{p,q}(\Omega) = 0, \qquad q \neq 0.$$

(Kohn) Sobolev estimates for the $\overline{\partial}$ -problem

Let Ω be a bounded pseudoconvex domain in \mathbb{C}^n with smooth boundary. Then

$$H_{W^s}^{p,q}(\Omega) = 0, \qquad s \in \mathbb{N}.$$

Kohn 1963, 1974

If $\Omega \subset\subset \mathbb{C}^n$ is bounded and pseudoconvex with smooth boundary, then

$$H^{p,q}(\overline{\Omega}) = 0, \qquad q \neq 0.$$

Closed range property for pseudoconvex domains in \mathbb{C}^n

Hörmander 1965

If $\Omega \subset\subset \mathbb{C}^n$ is bounded and pseudoconvex, then

$$H_{L^2}^{p,q}(\Omega) = 0, \qquad q \neq 0.$$

(Kohn) Sobolev estimates for the $\overline{\partial}$ -problem

Let Ω be a bounded pseudoconvex domain in \mathbb{C}^n with smooth boundary. Then

$$H_{W^s}^{p,q}(\Omega) = 0, \quad s \in \mathbb{N}.$$

Kohn 1963, 1974

If $\Omega \subset\subset \mathbb{C}^n$ is bounded and pseudoconvex with smooth boundary, then

$$H^{p,q}(\overline{\Omega}) = 0, \qquad q \neq 0.$$

Ideas of the proof

Use the weight function $t|z|^2$, t > 0, to set up the problem in the weighted L^2 space with respect to weights $L^2(\Omega, e^{-t|z|^2})$.

• In Hörmander's case, we first choose t > 0 to obtain the L^2 existence theorem. Set $t = \delta^{-2}$ where δ is the diameter of the domain Ω to obtain the estimates independent of the weights:

$$||f||^2 \le \frac{e\delta^2}{q} (||\overline{\partial}f||^2 + ||\overline{\partial}^*f||^2), \quad f \in \text{Dom}(\overline{\partial}) \cap \text{Dom}(\overline{\partial}^*).$$

If q = n, this is the Poincaré's inequality

• In Kohn's case, we choose t large and let $t \to \infty$ to obtain the smooth solutions.

Ideas of the proof

Use the weight function $t|z|^2$, t > 0, to set up the problem in the weighted L^2 space with respect to weights $L^2(\Omega, e^{-t|z|^2})$.

• In Hörmander's case, we first choose t > 0 to obtain the L^2 existence theorem. Set $t = \delta^{-2}$ where δ is the diameter of the domain Ω to obtain the estimates independent of the weights:

$$||f||^2 \le \frac{e\delta^2}{q}(||\overline{\partial}f||^2 + ||\overline{\partial}^*f||^2), \quad f \in \text{Dom}(\overline{\partial}) \cap \text{Dom}(\overline{\partial}^*).$$

If q = n, this is the Poincaré's inequality.

• In Kohn's case, we choose t large and let $t \to \infty$ to obtain the smooth solutions.

Ideas of the proof

Use the weight function $t|z|^2$, t > 0, to set up the problem in the weighted L^2 space with respect to weights $L^2(\Omega, e^{-t|z|^2})$.

• In Hörmander's case, we first choose t > 0 to obtain the L^2 existence theorem. Set $t = \delta^{-2}$ where δ is the diameter of the domain Ω to obtain the estimates independent of the weights:

$$||f||^2 \le \frac{e\delta^2}{q}(||\overline{\partial}f||^2 + ||\overline{\partial}^*f||^2), \quad f \in \text{Dom}(\overline{\partial}) \cap \text{Dom}(\overline{\partial}^*).$$

If q = n, this is the Poincaré's inequality.

• In Kohn's case, we choose t large and let $t \to \infty$ to obtain the smooth solutions.

Serre Duality Theorem

The classical Serre Duality theorem is a powerful tool in complex analysis. The formulation is similar to the Poincaré's duality.

Theorem (Serre Duality 1955)

Let Ω be a domain in a complex manifold and let E be a holomorphic vector bundle on $\overline{\Omega}$. Let $\overline{\partial}_E$ has closed range in the Fréchet space $C^{\infty}_{p,q}(\Omega,E)$ and $C^{\infty}_{p,a+1}(\Omega,E)$. We have $H^{p,q}(\Omega,E)'\cong H^{n-p,n-q}_c(\Omega,E^*)$.

- The classical Serre duality are duality results of Dolbeault coholomology group $H^{p,q}(\Omega,E)$ for E-valued smooth (p,q)-forms with the Fréchet topology and compactly supported smooth E^* -valued forms with the natural inductive limit topology.
- It is natural to use the L^2 setting for duality results.

Serre Duality Theorem

The classical Serre Duality theorem is a powerful tool in complex analysis. The formulation is similar to the Poincaré's duality.

Theorem (Serre Duality 1955)

Let Ω be a domain in a complex manifold and let E be a holomorphic vector bundle on $\overline{\Omega}$. Let $\overline{\partial}_E$ has closed range in the Fréchet space $C^{\infty}_{p,q}(\Omega,E)$ and $C^{\infty}_{p,q+1}(\Omega,E)$. We have $H^{p,q}(\Omega,E)'\cong H^{n-p,n-q}_c(\Omega,E^*)$.

- The classical Serre duality are duality results of Dolbeault coholomology group $H^{p,q}(\Omega,E)$ for E-valued smooth (p,q)-forms with the Fréchet topology and compactly supported smooth E^* -valued forms with the natural inductive limit topology.
- It is natural to use the L^2 setting for duality results.

L^2 Serre Duality

Theorem (Chakrabarti-S 2012)

Let Ω be a bounded domain in a complex hermitian manifold of dimension n and let E be a holomorphic vector bundle on $\overline{\Omega}$ with a hermitian metric h. Suppose that \square_E has closed range on $L^2_{p,q}(\Omega,E)$. Then \square_{c,E^*} has closed range on $L^2_{n-p,n-q}(\Omega,E^*)$ and $H^{p,q}_{L^2}(\Omega,E)\cong H^{n-p,n-q}_{c,L^2}(\Omega,E^*)$.

• Let $\star_E : C^{\infty}_{p,q}(\Omega, E) \to C^{n-p,n-q}(\Omega, E^*)$ be the Hodge star operator.

$$\star_E \square_E = \square_{E^*}^c \star_E.$$

• This gives the explicit formula:

$$\star_E \mathcal{H}^{p,q}(\Omega, E) = \mathcal{H}^{n-p,n-q}_{c,L^2}(\Omega, E^*).$$

• The theorem follows from the L^2 Hodge theorem.

Outline

- 1 The $\overline{\partial}$ -problem and Dolbeault cohomology groups
- The Strong Oka's Lemma
- 3 Dolbeault cohomology on annuli
- Solution to the Chinese Coin Problem
- 5 The Cauchy-Riemann Equations in Complex Projective Spaces
- 6 Non-closed Range Property for Some smooth bounded Stein Domain

The Oka's Lemma

Let $\Omega \subseteq \mathbb{C}^n$.

Oka's Theorem

• Suppose Ω is pseudoconvex in \mathbb{C}^n . Then there exists a strictly plurisubharmonic exhaustion function.

Bounded plurisubharmonic exhaustion functions

If $\Omega \subset \subset \mathbb{C}^n$ is a bounded pseudoconvex domain with C^2 boundary. Then there exist a defining function r and a positive constant $0 < \eta \le 1$ such that $\hat{r} = -(-r)^{\eta}$ is plurisubharmonic on Ω (Diederich-Fornaess 1977).

- There exists a bounded Hölder continuous plurisubharmonic exhaustion function.
- This is also true if the boundary is just Lipschitz (Kerzman-Rosay, Demailly, Harrington).

The Oka's Lemma

Let $\Omega \subseteq \mathbb{C}^n$.

Oka's Theorem

• Suppose Ω is pseudoconvex in \mathbb{C}^n . Then there exists a strictly plurisubharmonic exhaustion function.

Bounded plurisubharmonic exhaustion functions

If $\Omega \subset\subset \mathbb{C}^n$ is a bounded pseudoconvex domain with C^2 boundary. Then there exist a defining function r and a positive constant $0 < \eta \le 1$ such that $\hat{r} = -(-r)^{\eta}$ is plurisubharmonic on Ω (Diederich-Fornaess 1977).

- There exists a bounded Hölder continuous plurisubharmonic exhaustion function.
- This is also true if the boundary is just Lipschitz (Kerzman-Rosay, Demailly, Harrington).

The Oka's Lemma

Let $\Omega \subseteq \mathbb{C}^n$.

Oka's Theorem

• Suppose Ω is pseudoconvex in \mathbb{C}^n . Then there exists a strictly plurisubharmonic exhaustion function.

Bounded plurisubharmonic exhaustion functions

If $\Omega \subset\subset \mathbb{C}^n$ is a bounded pseudoconvex domain with C^2 boundary. Then there exist a defining function r and a positive constant $0 < \eta \le 1$ such that $\hat{r} = -(-r)^{\eta}$ is plurisubharmonic on Ω (Diederich-Fornaess 1977).

- There exists a bounded Hölder continuous plurisubharmonic exhaustion function.
- This is also true if the boundary is just Lipschitz (Kerzman-Rosay, Demailly, Harrington).

Strong Oka's lemma and the Diederich-Fornaess exponent

Let r be a defining function for the pseudoconvex domain Ω such that

$$-i\partial\overline{\partial}\log(-r)\geq 0.$$

Let $\tilde{r} = re^{-t|z|^2}$ for some t > 0. Then $\delta = -\tilde{r}$ satisfies

$$i\partial \overline{\partial} - \log \delta = i\partial \overline{\partial} - \log r + it\partial \overline{\partial} |z|^2 \ge t\omega.$$

We say that $\delta = -\tilde{r}$ satisfies the strong Oka's lemma. Let $0 < t_0 \le 1$.

The following three conditions are equivalent:

- $i\partial \overline{\partial}(\log \delta) \geq it_0 \frac{\partial \delta \wedge \overline{\partial} \delta}{\delta^2}$.
- $i\partial \overline{\partial}(-\delta^{t_0}) \geq 0$.
- For any $0 < t < t_0$, $i\partial \overline{\partial}(-\delta^t) \ge C_t \delta^t(\omega + i\frac{\partial \delta \wedge \partial \delta}{\delta^2})$ for $C_t > 0$.

Suppose that the boundary is C^2 . There exists $0 < \eta_0 \le 1$

$$i\partial\overline{\partial} - \log\delta \ge i\eta_0 \frac{\partial\delta \wedge \overline{\partial}\delta}{\delta^2} \ \Leftrightarrow \ i\partial\overline{\partial}(-\delta^{\eta_0}) \ge 0.$$

Boundary regularity for the $\overline{\partial}$ -Neumann problem

Boas-Straube (Boundary Regularity when $\eta = 1$)

Suppose Ω is a bounded pseudoconvex domain with smooth boundary in \mathbb{C}^n such that there exists a defining function plurisubharmonic on the boundary $b\Omega$. The Bergman projection B and the canonical solution operator $\overline{\partial}^*N$ are exact regular on W^s , $s \geq 0$.

Sobolev estimates for the $\overline{\partial}$ -Neumann problem on Lipschitz domains

Suppose Ω is a bounded pseudoconvex domain with Lipschitz boundary in \mathbb{C}^n

- The Bergman projection B and the canonical solution operator $\overline{\partial}^* N$ are exact regular on W^{ϵ} when $\epsilon < \frac{\eta}{2}$. (Berndtsson-Charpentier)
- $N: W_{0,1}^{\epsilon}(\Omega) \to W_{0,1}^{\epsilon}(\Omega)$ (Cao-S-Wang).
- *B* and *N* are not regular on the Diederich-Fornaess worm domains for some $W^s(\Omega)$ (Barrett).

Boundary regularity for the $\overline{\partial}$ -Neumann problem

Boas-Straube (Boundary Regularity when $\eta = 1$)

Suppose Ω is a bounded pseudoconvex domain with smooth boundary in \mathbb{C}^n such that there exists a defining function plurisubharmonic on the boundary $b\Omega$. The Bergman projection B and the canonical solution operator $\overline{\partial}^*N$ are exact regular on W^s , $s \geq 0$.

Sobolev estimates for the $\overline{\partial}$ -Neumann problem on Lipschitz domains

Suppose Ω is a bounded pseudoconvex domain with Lipschitz boundary in \mathbb{C}^n

- The Bergman projection B and the canonical solution operator $\overline{\partial}^* N$ are exact regular on W^{ϵ} when $\epsilon < \frac{\eta}{2}$. (Berndtsson-Charpentier)
- $N: W_{0,1}^{\epsilon}(\Omega) \to W_{0,1}^{\epsilon}(\Omega)$ (Cao-S-Wang).
- *B* and *N* are not regular on the Diederich-Fornaess worm domains for some $W^s(\Omega)$ (Barrett).

Outline

- 1 The $\overline{\partial}$ -problem and Dolbeault cohomology groups
- 2 The Strong Oka's Lemma
- 3 Dolbeault cohomology on annuli
- Solution to the Chinese Coin Problem
- 5 The Cauchy-Riemann Equations in Complex Projective Spaces
- 6 Non-closed Range Property for Some smooth bounded Stein Domain

Closed range property for non-pseudoconvex domains

- Let $\Omega \subseteq X$ is a domain in a complex manifold X and $b\Omega$ satisfies Andreotti-Grauert condition A(q), i.e., the Levi form has at least either n-q positive eigenvalues or q+1 negative eigenvalues at each boundary point.
 - It follows from Hörmander-Kohn's theory, subelliptic $\frac{1}{2}$ estimates hold and the closed range holds. Furthermore, $H_{L^2}^{p,q}(\Omega)$ is finite dimensional.
- If $\Omega \in X$ is an annulus between two smooth strongly pseudoconvex domains and $n \geq 3$, i.e.

$$\Omega = \Omega_1 \setminus \Omega_0$$

then $\overline{\partial}$ has closed range, and

$$H_{L^2}^{p,q}(\Omega) = 0$$

if $q \neq 0$ and $q \neq n - 1$.

• This result is not true for complex manifold. If n=2 and q=1, there exists an annuli domain with *strongly* pseudoconcave boundary such that $\overline{\partial}$ does not have closed range (Rossi's example).

Closed range property for non-pseudoconvex domains

- Let Ω ∈ X is a domain in a complex manifold X and bΩ satisfies
 Andreotti-Grauert condition A(q), i.e., the Levi form has at least either n − q positive eigenvalues or q + 1 negative eigenvalues at each boundary point.
 - It follows from Hörmander-Kohn's theory, subelliptic $\frac{1}{2}$ estimates hold and the closed range holds. Furthermore, $H_{L^2}^{p,q}(\Omega)$ is finite dimensional.
- If $\Omega \subseteq X$ is an annulus between two smooth strongly pseudoconvex domains and $n \ge 3$, i.e.

$$\Omega = \Omega_1 \setminus \Omega_0,$$

then $\overline{\partial}$ has closed range, and

$$H_{L^2}^{p,q}(\Omega) = 0$$

if $q \neq 0$ and $q \neq n - 1$.

• This result is not true for complex manifold. If n=2 and q=1, there exists an annuli domain with *strongly* pseudoconcave boundary such that $\overline{\partial}$ does not have closed range (Rossi's example).

Application of L^2 Serre duality

• Let $\Omega \in \mathbb{C}^n$ be an annulus between two bounded pseudoconvex domains, i.e.

$$\Omega = \Omega_1 \setminus \overline{\Omega_0},$$

• Suppose that the boundary of Ω_0 is C^2 . Then

$$H_{L^2}^{p,q}(\Omega) = 0, \quad 0 < q < n-1.$$

• Suppose that the boundary of Ω_0 is Lipschitz and Ω_1 is smooth. Then

$$H_{W^s}^{p,q}(\Omega) = 0, \qquad s \ge 1$$

if 0 < q < n - 1.

• The boundary of Ω_0 is only Lipschitz smooth. This is proved by the L^2 Serre duality with singular weights δ^t where δ is the distance function to the boundary satisfying the strong Oka's lemma.

Harmonic spaces for q = n - 1 on the annulus

Hörmander 2004

Let $\Omega = B_1 \setminus \overline{B}_0$, where B_1 and B_0 are two concentric balls in \mathbb{C}^n . Then \square has closed range and the harmonic space $H_{L^2}^{p,n-1}(\Omega)$ is isomorphic to the Bergman space $H_{L^2}(B_0)$. The harmonic space $\mathcal{H}^{n,n-1}(\Omega) = \{\sum_j h(\frac{z}{|z|^2}) \star d\overline{z}_j \mid h \in H_{L^2}(B_0)\}.$

Duality between harmonic and Bergman spaces (2011)

Let $\Omega = \Omega_1 \setminus \overline{\Omega_0} \in \mathbb{C}^n$ where Ω_1 is bounded and pseudoconvex and $\Omega_0 \in \Omega_1$ is also pseudoconvex but with C^2 smooth boundary, then again closed range holds for q = n - 1 and

$$H_{L^2}^{n,n-1}(\Omega) \cong H_{L^2}(\Omega_0).$$

If $b\Omega_0$ is not C^2 , it is not known if $H^{0,n-1}(\Omega)$ is Hausdorff.

More on the annulus

Let T
otin
otin
otin 2 be the Hartogs triangle

$$T = \{(z, w) \mid |z| < |w| < 1\}.$$

Then *T* is not Lipschitz at the origin.

- Let Ω be a pseudoconvex domain in \mathbb{C}^2 such that $\overline{T} \subset \Omega$. Then $H^{0,1}(\Omega \setminus \overline{T})$ is not Hausdorff (Trapani, Laurent-S).
- If we replace H by the bidisc \triangle^2 , then $H^{0,1}(\Omega \setminus \overline{\triangle^2})$ is Hausdorff since \triangle^2 has a Stein neighborhood basis (Laurent-Leiterer).

Chinese Coin Problem

Let B be a ball of radius two in \mathbb{C}^2 and \triangle^2 be the bidisc. Determine if the L^2 cohomology $H^{0,1}_{L^2}(B\setminus\overline{\triangle^2})$ is Hausdorff.

Outline

- 1 The $\overline{\partial}$ -problem and Dolbeault cohomology groups
- 2 The Strong Oka's Lemma
- 3 Dolbeault cohomology on annuli
- 4 Solution to the Chinese Coin Problem
- 5 The Cauchy-Riemann Equations in Complex Projective Spaces
- 6 Non-closed Range Property for Some smooth bounded Stein Domain

Solution to the Chinese Coin Problem

Let V_1, \ldots, V_n be bounded planar domains in \mathbb{C} with Lipschtz boundary and let $V = V_1 \times \cdots \times V_n$.

Theorem (Chakrabarti-Laurent-S)

Let $\tilde{\Omega}$ be a bounded pseudoconvex domain in \mathbb{C}^n such that $V \subseteq \tilde{\Omega}$. Let $\Omega = \tilde{\Omega} \setminus \overline{V}$ be the annulus between $\tilde{\Omega}$ and V. Then $H^{0,1}_{L^2}(\Omega)$ is Hausdorff and

- $H_{L^2}^{0,1}(\Omega) = \{0\}, \text{ if } n \geq 3.$
- $H_{L^2}^{0,1}(\Omega)$ is infinite dimensional if n=2.

Corollary

Let V be the product of bounded planar domains with Lipschitz boundary. Then

$$H_{W^1}^{0,n-1}(V) = \{0\}.$$

Duality between the cohomology on the annuli and the hole

Let $\tilde{\Omega}$ be a bounded pseudoconvex domain in \mathbb{C}^n such that $V \subseteq \tilde{\Omega}$. Let $\Omega = \tilde{\Omega} \setminus \overline{V}$ be the annulus between $\tilde{\Omega}$ and V.

Lemma

Then the following are equivalent:

- $H_{L^2}^{0,1}(\Omega)$ is Hausdorff.
- $H_{W^1}^{0,n-1}(V) = 0$
 - (1) and (2) are equivalent following the L^2 Serre duality. Thus to study the L^2 cohomology of Ω is equivalent to the W^1 -estimates for $\bar{\partial}$ on the inner domain V.
 - If V is a pseudoconvex domain with C^2 boundary, then (3) holds. For Lipschitz domains, even when V is the bidisc, this is not known!

Duality between the cohomology on the annuli and the hole

Let $\tilde{\Omega}$ be a bounded pseudoconvex domain in \mathbb{C}^n such that $V \subseteq \tilde{\Omega}$. Let $\Omega = \tilde{\Omega} \setminus \overline{V}$ be the annulus between $\tilde{\Omega}$ and V.

Lemma

Then the following are equivalent:

- $H_{L^2}^{0,1}(\Omega)$ is Hausdorff.
- \bullet $H_{c,L^2}^{n,n}(\Omega)$ is Hausdorff.
- $H_{W^1}^{0,n-1}(V) = 0$
 - (1) and (2) are equivalent following the L^2 Serre duality. Thus to study the L^2 cohomology of Ω is equivalent to the W^1 -estimates for $\bar{\partial}$ on the inner domain V.
 - If V is a pseudoconvex domain with C^2 boundary, then (3) holds. For Lipschitz domains, even when V is the bidisc, this is not known!

Duality between the cohomology on the annuli and the hole

Let $\tilde{\Omega}$ be a bounded pseudoconvex domain in \mathbb{C}^n such that $V \subseteq \tilde{\Omega}$. Let $\Omega = \tilde{\Omega} \setminus \overline{V}$ be the annulus between $\tilde{\Omega}$ and V.

Lemma

Then the following are equivalent:

- $H_{L^2}^{0,1}(\Omega)$ is Hausdorff.
- $H_{W^1}^{0,n-1}(V) = 0$
 - (1) and (2) are equivalent following the L^2 Serre duality. Thus to study the L^2 cohomology of Ω is equivalent to the W^1 -estimates for $\bar{\partial}$ on the inner domain V.
 - If V is a pseudoconvex domain with C^2 boundary, then (3) holds. For Lipschitz domains, even when V is the bidisc, this is not known!

Outline

- 1 The $\overline{\partial}$ -problem and Dolbeault cohomology groups
- 2 The Strong Oka's Lemma
- 3 Dolbeault cohomology on annuli
- Solution to the Chinese Coin Problem
- 5 The Cauchy-Riemann Equations in Complex Projective Spaces
- 6 Non-closed Range Property for Some smooth bounded Stein Domain

Diederich-Fornaess exponent in complex projective spaces

Let Ω be a pseudoconvex domain in \mathbb{CP}^n equipped with the Fubini-Study metric ω .

Takeuchi's Theorem 1964

The signed distance function $\rho = -\delta$ for Ω satisfies

$$i\partial\overline{\partial} - \log\delta \ge C\omega$$

where C > 0. We say that δ satisfies the strong Oka's lemma.

Ohsawa-Sibony 1998

Suppose Ω has C^2 boundary. There exists a positive Diederich-Fornaess exponent $0 < \eta \le 1$ for the distance function δ under the Fubini-Study metric.

• This is also true for pseudoconvex domains in \mathbb{CP}^n with Lipschitz boundary (Harrington (2015)).

Diederich-Fornaess exponent in complex projective spaces

Let Ω be a pseudoconvex domain in \mathbb{CP}^n equipped with the Fubini-Study metric ω .

Takeuchi's Theorem 1964

The signed distance function $\rho = -\delta$ for Ω satisfies

$$i\partial\overline{\partial} - \log\delta \ge C\omega$$

where C > 0. We say that δ satisfies the strong Oka's lemma.

Ohsawa-Sibony 1998

Suppose Ω has C^2 boundary. There exists a positive Diederich-Fornaess exponent $0 < \eta \le 1$ for the distance function δ under the Fubini-Study metric.

• This is also true for pseudoconvex domains in \mathbb{CP}^n with Lipschitz boundary (Harrington (2015)).

Let $\Omega \in \mathbb{CP}^n$ be pseudoconvex.

- (Takeuchi) Ω is Stein and $H^{p,q}(\Omega) = 0, \ q \neq 0$.
- Using the Bochner-Kodaira-Morrey-Kohn formula, $H_{L^2}^{0,1}(\Omega) = 0$.

Boundary Regularity

- For $0 \le p \le n$, $H_{L^2}^{p,1}(\Omega) = 0$.
- $N: W_{0,1}^{\epsilon}(\Omega) \to W_{0,1}^{\epsilon}(\Omega), \, \epsilon < \frac{\eta}{2}$. (Berndtsson-Charpentier, Cao-S-Wang)
- Open Question: Can one have $H^{0,1}_{W^s}(\Omega) = 0$ for $s \ge \frac{1}{2}$?
- If yes, this will give closed-range property for $\overline{\partial}_b$ on pseudoconvex boundary in \mathbb{CP}^n .
- We only know that $H^{0,1}(\overline{\Omega})$ is Hausdorff.

Let $\Omega \in \mathbb{CP}^n$ be pseudoconvex.

- (Takeuchi) Ω is Stein and $H^{p,q}(\Omega) = 0, \ q \neq 0$.
- Using the Bochner-Kodaira-Morrey-Kohn formula, $H_{L^2}^{0,1}(\Omega) = 0$.

Boundary Regularity

- For $0 \le p \le n$, $H_{L^2}^{p,1}(\Omega) = 0$.
- $N: W_{0,1}^{\epsilon}(\Omega) \to W_{0,1}^{\epsilon}(\Omega), \, \epsilon < \frac{\eta}{2}$. (Berndtsson-Charpentier, Cao-S-Wang)
- Open Question: Can one have $H^{0,1}_{W^s}(\Omega) = 0$ for $s \ge \frac{1}{2}$?
- If yes, this will give closed-range property for $\overline{\partial}_b$ on pseudoconvex boundary in \mathbb{CP}^n .
- We only know that $H^{0,1}(\overline{\Omega})$ is Hausdorff.

Let $\Omega \subseteq \mathbb{CP}^n$ be pseudoconvex.

- (Takeuchi) Ω is Stein and $H^{p,q}(\Omega) = 0, \ q \neq 0$.
- Using the Bochner-Kodaira-Morrey-Kohn formula, $H_{L^2}^{0,1}(\Omega) = 0$.

Boundary Regularity

- For $0 \le p \le n$, $H_{L^2}^{p,1}(\Omega) = 0$.
- $N:W_{0,1}^\epsilon(\Omega)\to W_{0,1}^\epsilon(\Omega),\,\epsilon<\frac{\eta}{2}.$ (Berndtsson-Charpentier, Cao-S-Wang)
- Open Question: Can one have $H^{0,1}_{W^s}(\Omega) = 0$ for $s \ge \frac{1}{2}$?
- If yes, this will give closed-range property for $\overline{\partial}_b$ on pseudoconvex boundary in \mathbb{CP}^n .
- We only know that $H^{0,1}(\overline{\Omega})$ is Hausdorff.

Let $\Omega \subseteq \mathbb{CP}^n$ be pseudoconvex.

- (Takeuchi) Ω is Stein and $H^{p,q}(\Omega) = 0, \ q \neq 0$.
- Using the Bochner-Kodaira-Morrey-Kohn formula, $H_{L^2}^{0,1}(\Omega) = 0$.

Boundary Regularity

- For $0 \le p \le n$, $H_{L^2}^{p,1}(\Omega) = 0$.
- $N:W_{0,1}^\epsilon(\Omega)\to W_{0,1}^\epsilon(\Omega),\,\epsilon<\frac{\eta}{2}.$ (Berndtsson-Charpentier, Cao-S-Wang)
- Open Question: Can one have $H^{0,1}_{W^s}(\Omega) = 0$ for $s \ge \frac{1}{2}$?
- If yes, this will give closed-range property for $\overline{\partial}_b$ on pseudoconvex boundary in \mathbb{CP}^n .
- We only know that $H^{0,1}(\overline{\Omega})$ is Hausdorff.

Let $\Omega \subseteq \mathbb{CP}^n$ be pseudoconvex.

- (Takeuchi) Ω is Stein and $H^{p,q}(\Omega) = 0, \ q \neq 0$.
- Using the Bochner-Kodaira-Morrey-Kohn formula, $H_{L^2}^{0,1}(\Omega) = 0$.

Boundary Regularity

- For $0 \le p \le n$, $H_{L^2}^{p,1}(\Omega) = 0$.
- $N: W_{0,1}^{\epsilon}(\Omega) \to W_{0,1}^{\epsilon}(\Omega), \epsilon < \frac{\eta}{2}$. (Berndtsson-Charpentier, Cao-S-Wang)
- Open Question: Can one have $H^{0,1}_{W^s}(\Omega) = 0$ for $s \ge \frac{1}{2}$?
- If yes, this will give closed-range property for $\overline{\partial}_b$ on pseudoconvex boundary in \mathbb{CP}^n .
- We only know that $H^{0,1}(\overline{\Omega})$ is Hausdorff.

Let $\Omega \subseteq \mathbb{CP}^n$ be pseudoconvex.

- (Takeuchi) Ω is Stein and $H^{p,q}(\Omega) = 0, \ q \neq 0$.
- Using the Bochner-Kodaira-Morrey-Kohn formula, $H_{L^2}^{0,1}(\Omega) = 0$.

Boundary Regularity

- For $0 \le p \le n$, $H_{L^2}^{p,1}(\Omega) = 0$.
- $N: W_{0,1}^{\epsilon}(\Omega) \to W_{0,1}^{\epsilon}(\Omega), \epsilon < \frac{\eta}{2}$. (Berndtsson-Charpentier, Cao-S-Wang)
- Open Question: Can one have $H^{0,1}_{W^s}(\Omega) = 0$ for $s \ge \frac{1}{2}$?
- If yes, this will give closed-range property for $\overline{\partial}_b$ on pseudoconvex boundary in \mathbb{CP}^n .
- We only know that $H^{0,1}(\overline{\Omega})$ is Hausdorff.

Let $\Omega \subseteq \mathbb{CP}^n$ be pseudoconvex.

- (Takeuchi) Ω is Stein and $H^{p,q}(\Omega) = 0, \ q \neq 0$.
- Using the Bochner-Kodaira-Morrey-Kohn formula, $H_{L^2}^{0,1}(\Omega) = 0$.

Boundary Regularity

- For $0 \le p \le n$, $H_{L^2}^{p,1}(\Omega) = 0$.
- $N: W_{0,1}^{\epsilon}(\Omega) \to W_{0,1}^{\epsilon}(\Omega), \epsilon < \frac{\eta}{2}$. (Berndtsson-Charpentier, Cao-S-Wang)
- Open Question: Can one have $H^{0,1}_{W^s}(\Omega) = 0$ for $s \ge \frac{1}{2}$?
- If yes, this will give closed-range property for $\overline{\partial}_b$ on pseudoconvex boundary in \mathbb{CP}^n .
- We only know that $H^{0,1}(\overline{\Omega})$ is Hausdorff.

Let M be a compact hyper surface in \mathbb{CP}^n such that M divides \mathbb{CP}^n into two pseudoconvex domains. Then M is called *Levi-flat*. If M is C^1 smooth, then it is foliated by complex submanifolds locally

 $M \cap U = \cup_t \Sigma_t$

where Σ_t is a complex manifold of dimension n-1.

- Lins-Neto (1999) There exist no real-analytic Levi-flat hypersurfaces in $\mathbb{C}P^n$, $n \geq 3$.
- Siu (2000) There exist no smooth Levi-flat hypersurfaces in $\mathbb{C}P^n$, $n \ge 3$.
- Cao-S (2007) There exist no Lipschitz Levi-flat hypersurfaces in $\mathbb{C}P^n$, $n \geq 3$.

Let M be a compact hyper surface in \mathbb{CP}^n such that M divides \mathbb{CP}^n into two pseudoconvex domains. Then M is called *Levi-flat*. If M is C^1 smooth, then it is foliated by complex submanifolds locally

$$M \cap U = \cup_t \Sigma_t$$

where Σ_t is a complex manifold of dimension n-1.

- Lins-Neto (1999) There exist no real-analytic Levi-flat hypersurfaces in $\mathbb{C}P^n$, $n \geq 3$.
- Siu (2000) There exist no smooth Levi-flat hypersurfaces in $\mathbb{C}P^n$, $n \ge 3$.
- Cao-S (2007) There exist no Lipschitz Levi-flat hypersurfaces in $\mathbb{C}P^n$, $n \geq 3$.

Let M be a compact hyper surface in \mathbb{CP}^n such that M divides \mathbb{CP}^n into two pseudoconvex domains. Then M is called *Levi-flat*.

If M is C^1 smooth, then it is foliated by complex submanifolds locally

$$M \cap U = \cup_t \Sigma_t$$

where Σ_t is a complex manifold of dimension n-1.

- Lins-Neto (1999) There exist no real-analytic Levi-flat hypersurfaces in $\mathbb{C}P^n$, $n \geq 3$.
- Siu (2000) There exist no smooth Levi-flat hypersurfaces in $\mathbb{C}P^n$, $n \ge 3$.
- Cao-S (2007) There exist no Lipschitz Levi-flat hypersurfaces in $\mathbb{C}P^n$, $n \geq 3$.

Let M be a compact hyper surface in \mathbb{CP}^n such that M divides \mathbb{CP}^n into two pseudoconvex domains. Then M is called *Levi-flat*.

If M is C^1 smooth, then it is foliated by complex submanifolds locally

$$M \cap U = \cup_t \Sigma_t$$

where Σ_t is a complex manifold of dimension n-1.

- Lins-Neto (1999) There exist no real-analytic Levi-flat hypersurfaces in $\mathbb{C}P^n$, $n \geq 3$.
- Siu (2000) There exist no smooth Levi-flat hypersurfaces in $\mathbb{C}P^n$, $n \ge 3$.
- Cao-S (2007) There exist no Lipschitz Levi-flat hypersurfaces in $\mathbb{C}P^n$, $n \ge 3$.

Let M be a compact hyper surface in \mathbb{CP}^n such that M divides \mathbb{CP}^n into two pseudoconvex domains. Then M is called *Levi-flat*.

If M is C^1 smooth, then it is foliated by complex submanifolds locally

$$M \cap U = \cup_t \Sigma_t$$

where Σ_t is a complex manifold of dimension n-1.

- Lins-Neto (1999) There exist no real-analytic Levi-flat hypersurfaces in $\mathbb{C}P^n$, $n \geq 3$.
- Siu (2000) There exist no smooth Levi-flat hypersurfaces in $\mathbb{C}P^n$, $n \ge 3$.
- Cao-S (2007) There exist no Lipschitz Levi-flat hypersurfaces in $\mathbb{C}P^n$, $n \ge 3$.

The $\overline{\partial}$ -equation on pseudoconcave domains in $\mathbb{C}P^n$, $n \geq 3$

Let Ω be pseudoconvex in $\mathbb{C}P^n$ with $\overline{\Omega} \neq \mathbb{C}P^n$, where $n \geq 3$. Let

$$\Omega^+ = \mathbb{C}P^n \setminus \overline{\Omega}$$

Cao-S-Wang (2004)

Suppose the boundary $b\Omega$ is \mathbb{C}^2 . We have

$$H_{W^{1+s}}^{0,1}(\Omega^+) = \{0\}, \qquad 0 \le s < \eta/2.$$

Cao-S (2007)

Suppose Ω has Lipschitz boundary. We have

$$H_{W^{1+s}}^{0,1}(\Omega^+) = \{0\}, \qquad 0 \le s < \frac{1}{2}.$$

Corollary:

There exist no Lipschitz Levi-flat hypersurfaces in $\mathbb{C}P^n$, $n \geq 3$.

(Fu-Shaw 2016)

- If the Diederich-Fornæss index is greater than 1/n, then its boundary cannot be Levi flat; and if the Diederich-Fornæss index is greater than 1 1/n, then its boundary must have at least one strongly pseudoconvex boundary point.
- There exists a domain with Levi-flat boundary in a two-dimensional complex manifold with $\eta_0 = \frac{1}{2}$ (Diederich-Ohsawa).
- Adachi-Brinkschulte obtained similar results independently using different methods.

(Fu-Shaw 2016)

- If the Diederich-Fornæss index is greater than 1/n, then its boundary cannot be Levi flat; and if the Diederich-Fornæss index is greater than 1 1/n, then its boundary must have at least one strongly pseudoconvex boundary point.
- There exists a domain with Levi-flat boundary in a two-dimensional complex manifold with $\eta_0 = \frac{1}{2}$ (Diederich-Ohsawa).
- Adachi-Brinkschulte obtained similar results independently using different methods.

(Fu-Shaw 2016)

- If the Diederich-Fornæss index is greater than 1/n, then its boundary cannot be Levi flat; and if the Diederich-Fornæss index is greater than 1 1/n, then its boundary must have at least one strongly pseudoconvex boundary point.
- There exists a domain with Levi-flat boundary in a two-dimensional complex manifold with $\eta_0 = \frac{1}{2}$ (Diederich-Ohsawa).
- Adachi-Brinkschulte obtained similar results independently using different methods.

(Fu-Shaw 2016)

- If the Diederich-Fornæss index is greater than 1/n, then its boundary cannot be Levi flat; and if the Diederich-Fornæss index is greater than 1 1/n, then its boundary must have at least one strongly pseudoconvex boundary point.
- There exists a domain with Levi-flat boundary in a two-dimensional complex manifold with $\eta_0 = \frac{1}{2}$ (Diederich-Ohsawa).
- Adachi-Brinkschulte obtained similar results independently using different methods.

Proof:

Nemirovski 1999

A Stein domain Ω in a complex manifold with compact Levi-flat boundary does not admit a plurisubharmonic defining function.

proof

Assume that n = 2. Suppose there exists a plurisubharmonic function ψ for Ω . Let $\Omega_t = \{\psi < t\}, -\epsilon < t \le 0$. Define

$$F(t) = \int_{b\Omega_t} d^c \psi \wedge dd^c \psi.$$

Then $F(t) \ge 0$ by Stokes's theorem and F(0) = 0. For $t \ge s$, we have

$$F(t) - F(s) = \int_{\Omega_t \setminus \overline{\Omega}_s} dd^c \psi \wedge d \wedge dd^c \psi \ge 0.$$

This implies that F(t)=0. In our proof, we use $\psi=-\delta^{\eta}$

Proof:

Nemirovski 1999

A Stein domain Ω in a complex manifold with compact Levi-flat boundary does not admit a plurisubharmonic defining function.

proof

Assume that n = 2. Suppose there exists a plurisubharmonic function ψ for Ω . Let $\Omega_t = \{\psi < t\}, -\epsilon < t \le 0$. Define

$$F(t) = \int_{b\Omega_t} d^c \psi \wedge dd^c \psi.$$

Then $F(t) \ge 0$ by Stokes's theorem and F(0) = 0. For $t \ge s$, we have

$$F(t) - F(s) = \int_{\Omega_t \setminus \overline{\Omega}_s} dd^c \psi \wedge d \wedge dd^c \psi \geq 0.$$

This implies that F(t) = 0. In our proof, we use $\psi = -\delta^{\eta}$

Hartogs' Triangles in \mathbb{CP}^2

In \mathbb{CP}^2 , we denote the homogeneous coordinates by $[z_0, z_1, z_2]$. On the domain where $z_0 \neq 0$, we set $z = \frac{z_1}{z_0}$ and $w = \frac{z_2}{z_0}$. Let H^+ and H^- be defined by

$$H^{+} = \{ [z_0 : z_1 : z_2] \in \mathbb{CP}^2 \mid |z_1| < |z_2| \}$$

$$H^{-} = \{ [z_0 : z_1 : z_2] \in \mathbb{CP}^2 \mid |z_1| > |z_2| \}$$

$$M = \{ [z_0 : z_1 : z_2] \in \mathbb{CP}^2 \mid |z_1| = |z_2| \}.$$

$$H^{+} \cup M \cup H^{-} = \mathbb{CP}^2.$$

These domains are called Hartogs' triangles in \mathbb{CP}^2 . It is not Lipschitz at 0 and it is not foliated near 0.

L^2 theory for $\overline{\partial}$ on Hartongs Triangle

- Both H^+ and H^- are pseudoconvex.
- *M* is a (non-Lipschitz) Levi-flat hypersurface in \mathbb{CP}^2 .
- $H_{L^2}^{0,1}(H^+)=0$. But $H_{L^2}^{1,1}(H^+)$ and $H_{L^2}^{2,1}(H^+)$ are not known, not even the Hausdorff property.

Definition

Let

$$\overline{\partial}_s: L^2_{2,0}(H^+) \to H^{2,1}(H^+)$$

denote the *strong* L^2 closure of $\overline{\partial}$.

- We do not know if $\overline{\partial}_s$ has closed range.
- we do not know if $\overline{\partial} = \overline{\partial}_s$ (weak equals strong).
- $H_{\overline{\partial}_s,L^2}^{2,1}(H^+)$ is infinite dimensional (Laurent-Shaw 2018).

Outline

- 1 The $\overline{\partial}$ -problem and Dolbeault cohomology groups
- 2 The Strong Oka's Lemma
- 3 Dolbeault cohomology on annuli
- Solution to the Chinese Coin Problem
- 5 The Cauchy-Riemann Equations in Complex Projective Spaces
- 6 Non-closed Range Property for Some smooth bounded Stein Domain

Non-closed range property for some Stein domain

Theorem (Chakrabarti-S, 2015 Math. Ann.)

There exists a pseudoconvex domain Ω in a complex manifold such that

- ullet Ω is Stein with smooth (real-analytic) Levi-flat boundary.
- ullet Any continuous bounded plurisubharmonic function on Ω is a constant.
- $\overline{\partial}$ does not have closed range in $L^2_{2,1}(\Omega)$.
- $H_{L^2}^{2,1}(\Omega)$ is non-Hausdorff.

Let

$$X = \mathbb{CP}^1 \times T$$

be a compact complex manifold of dimension 2 endowed with the product metric where *T* is the torus.

The domain $\Omega \subset X = \mathbb{C}P^1 \times T$ is defined by

$$\Omega = \{(z, [w]) \in \mathbb{C}P^1 \times T : Rezw > 0\}.$$

Non-closed range property for some Stein domain

Theorem (Chakrabarti-S, 2015 Math. Ann.)

There exists a pseudoconvex domain Ω in a complex manifold such that

- ullet Ω is Stein with smooth (real-analytic) Levi-flat boundary.
- ullet Any continuous bounded plurisubharmonic function on Ω is a constant.
- $\overline{\partial}$ does not have closed range in $L^2_{2,1}(\Omega)$.
- $H_{L^2}^{2,1}(\Omega)$ is non-Hausdorff.

Let

$$X = \mathbb{CP}^1 \times T$$

be a compact complex manifold of dimension 2 endowed with the product metric where *T* is the torus.

The domain $\Omega \subset X = \mathbb{C}P^1 \times T$ is defined by

$$\Omega = \{(z, [w]) \in \mathbb{C}P^1 \times T : Rezw > 0\}.$$

Remarks

• Ω is biholomorphic to a punctured plane \mathbb{C}^* and an annulus. Hence Ω is Stein (Ohsawa 1982).

$$H^{p,q}(\Omega) = 0, \quad q > 0.$$

- We still do not know if $H_{L^2}^{0,1}(\Omega)$ or $H_{L^2}^{1,1}(\Omega)$ is Hausdorff.
- An earlier example (constructed by Grauert) of a pseudoconvex domain in a a two-tori has been shown with non-Hausdorff property by Malgrange (1975). But the domain is not holomorphically convex (not Stein).

Remarks

• Ω is biholomorphic to a punctured plane \mathbb{C}^* and an annulus. Hence Ω is Stein (Ohsawa 1982).

$$H^{p,q}(\Omega) = 0, \quad q > 0.$$

- We still do not know if $H_{L^2}^{0,1}(\Omega)$ or $H_{L^2}^{1,1}(\Omega)$ is Hausdorff.
- An earlier example (constructed by Grauert) of a pseudoconvex domain in a a two-tori has been shown with non-Hausdorff property by Malgrange (1975). But the domain is not holomorphically convex (not Stein).

Remarks

• Ω is biholomorphic to a punctured plane \mathbb{C}^* and an annulus. Hence Ω is Stein (Ohsawa 1982).

$$H^{p,q}(\Omega) = 0, \quad q > 0.$$

- We still do not know if $H_{L^2}^{0,1}(\Omega)$ or $H_{L^2}^{1,1}(\Omega)$ is Hausdorff.
- An earlier example (constructed by Grauert) of a pseudoconvex domain in a a two-tori has been shown with non-Hausdorff property by Malgrange (1975). But the domain is not holomorphically convex (not Stein).

Thank You